SEMESTER S6

DESIGN THINKING AND PRODUCT DEVELOPMENT

Course Code	GXEST605	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	60
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to Group A & Group B)

Course Objectives:

- 1. To guide students through the iterative stages of design thinking, including empathizing with users, defining problems, ideating solutions and developing Proof of Concepts (PoC) and technical feasibility studies.
- 2. To promote the development of critical thinking skills by engaging students in integrative inquiry, where they ask meaningful questions that connect classroom knowledge with real-world applications.
- 3. To equip students with the ability to involve in product design considering the sustainability, inclusivity, diversity and equity aspects.

Module No.	Syllabus Description				
	Fundamentals of design thinking and product development: Overview of				
	stages of product development lifecycle; Design thinking -Definition-Design				
	thinking for product innovation; Bringing social impact in ideation-Identifying				
	societal needs-understanding multi-faceted issues-community engagement				
	and empathetic design- technological innovation meeting societal needs;				
1	Understanding and Bridging the divide using Human Centered Design (HCD);				
	Designing for inclusivity in product development-embracing user diversity -				
	Long term impact - sustainability encompassing environmental, economic and				
	social dimensions; Technology Readiness Level in the Innovation Life-cycle;				
	Performing a self-check on innovative ideas - Originality of idea-				

SYLLABUS

	understanding innovation landscape - patentability - understanding the	
	economic landscape - Unique Selling Proposition (USP) - Repeatability and	
	Manufacturability - Sustainability - Leveraging business models for	
	comprehensive analysis	
	Empathize: Design thinking phases; Role of empathy in design thinking;	
	Methods of empathize phase - Ask 5 Why/ 5 W+H questions; Empathy	
	maps - Things to be done prior to empathy mapping - Activities during and	
2	after the session; Understanding empathy tools - Customer Journey Map -	(
2	Personas.	0
	Define : Methods of Define Phase: Storytelling, Critical items diagrams,	
	Define success.	
	Ideation : Stages of ideation; Techniques and tools - Divergent thinking	
	tools - Convergent thinking tools - Idea capturing tools; Cross-industry	
	inspiration; Role of research in ideation - Market research - consumer	
	research - leveraging research for informed ideation; Technological trends -	
	navigating the technological landscape - Integrating emerging technologies;	
3	Feasibility studies - technical, economic, market, operational, legal, and	6
	ethical feasibility; Ideation session- techniques and tips.	
	Proof of Concept (PoC) : Setting objectives; Risk assessment; Technology	
	scouting; Document and process management; Change management;	
	Knowledge Capture; Validating PoC; Story telling in PoC presentation	
	Design: Navigating from PoC to detailed design; Developing Specification	
	Requirement Document (SRD)/Software Requirement Specification (SRS);	
	Design for manufacturability; Industrial standards and readability of code;	
	Design to cost; Pre-compliance; Optimized code; Design Failure Mode and	
	Effects Analysis (DFMEA); Forecasting future design changes.	
	Prototyping: Alpha prototypes; Beta prototypes; Transition from design to	
4	prototype; Goals and expectations for Alpha and Beta prototypes; Effective	6
	strategies for maintaining timeline in prototyping; Testing and refining	
	Alpha prototypes; Transitioning to Beta prototypes.	
	Pilot build: Definition and purpose of a pilot build; setting objectives;	
	Identification and selection of manufacturing partner for pilot build; Testing	
	procedures in pilot build; Scaling from pilot build to full-scale production /	
	implementation.	
	implementation.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignments	Internal Examination	Reflective Journal and Portfolio	Total
5	20	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Empathize to capture the user needs and define the objectives with due consideration of various aspects including inclusivity, diversity and equity	K5
CO2	Ideate using divergent and convergent thinking to arrive at innovative ideas keeping in mind the sustainability, inclusivity, diversity and equity aspects.	K6
CO3	Engage in Human Centric Design of innovative products meeting the specifications	К5
CO4	Develop Proof of Concepts (PoC), prototypes & pilot build of products and test their performance with respect to the Specification Requirement Document.	K4
CO5	Reflect on professional and personal growth through the learnings in the course, identifying areas for further development	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2	3	3	3	2	2		3
CO2	3	2	3		2	3	3	3	2	2		3
CO3	3	2	3		2	3	3	2	2	2		3
CO4	3	2	2		3	3	3	2	2	2		3
CO5	3					3	3	2	2	2		3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Product Sense: Engineering your ideas into reality	Dr. K R Suresh Nair	NotionPress.com	2024				
2	Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation	Tim Brown	HarperCollins Publishers Ltd.	2009				
3	Design Thinking for Strategic Innovation	Idris Mootee	John Wiley & Sons Inc.	2013				

Sample Assignments:

- 1. Evaluate and prepare a report on how the aspects including inclusivity, diversity and equity are taken into consideration during the empathize and define phases of the Miniproject course.
- 2. Evaluate and prepare a report on how the aspects including sustainability, inclusivity, diversity and equity are taken into consideration during the ideate phase of the Miniproject course.
- 3. Evaluate and prepare a report on how User-Centric Design (UCD) is used in the design and development of PoC of the product being developed in the Miniproject course.
- 4. Prepare a plan for the prototype building of the product being developed in the Miniproject course.
- 5. Report on the activities during the empathize phase including the maps & other materials created during the sessions.
- 6. Report on the activities during the define phase including the maps & other materials created during the sessions.
- 7. Report of all the ideas created during the ideation phase of the Miniproject course through the tools including SCAMPER technique, SWOT analysis, Decision matrix analysis, six thinking hats exercise
- 8. Prepare a full scale production plan for the product being developed in the Miniproject course.
- 9. Create a Stanford Business Model Canvas related to the Miniproject.

An industrial visit of at least a day for experiential learning and submit a report on the learnings, for example industry standards and procedures.